Eliza Framework

Leveraging a LlaMa 3.2 3B model

  • Core Functionality: A conversational AI framework designed for natural language understanding and adaptive dialogue.

  • Custom Enhancements: Optimized modules for medical and biological terminology.

  • Real-time Adaptation: Adjusts recommendations based on ongoing research and user feedback.

Implementation DRAFT

import arweave
import llama_index
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader
from eliza_framework import ElizaAgent

# --- Configuration Variables ---
ARWEAVE_GATEWAY = 'https://arweave.net'
DATABASE_TRANSACTION_ID = '<your-arweave-database-transaction-id>'
LLAMA_MODEL = 'llama-3.2'

# --- Initialize Arweave Connection ---
def fetch_arweave_data(transaction_id):
    try:
        client = arweave.Client(gateway=ARWEAVE_GATEWAY)
        transaction_data = client.transactions.get_data(transaction_id)
        return transaction_data.decode('utf-8')
    except Exception as e:
        print(f"Error fetching data from ArWeave: {e}")
        return None

# --- Load Data into LlamaIndex ---
def load_data_to_index(data):
    with open('arweave_data.txt', 'w') as file:
        file.write(data)
    documents = SimpleDirectoryReader(input_dir='.', required_exts=['.txt']).load_data()
    index = GPTVectorStoreIndex.from_documents(documents, service_context=llama_index.ServiceContext.from_defaults(model=LLAMA_MODEL))
    return index

# --- Define AI Agent with Eliza Framework ---
class ArweaveAgent(ElizaAgent):
    def __init__(self, index):
        super().__init__(name='ArWeave Query Agent')
        self.index = index

    def respond(self, query):
        retriever = self.index.as_retriever()
        response = retriever.retrieve(query)
        return response[0].node.get_text() if response else "No relevant data found."

# --- Main Function ---
def main():
    arweave_data = fetch_arweave_data(DATABASE_TRANSACTION_ID)
    if arweave_data:
        index = load_data_to_index(arweave_data)
        agent = ArweaveAgent(index)
        
        print("ArWeave AI Agent is ready. Type 'exit' to quit.")
        while True:
            query = input("You: ")
            if query.lower() == 'exit':
                break
            response = agent.respond(query)
            print(f"Agent: {response}")
    else:
        print("Failed to retrieve ArWeave data.")

if __name__ == '__main__':
    main()

Last updated